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1 Introduction

The representation of potential energy surfaces (PESsatldits to electronic energies is a long-
standing goal of computational chemis#ry? Progress to extend this goal beyond three and four-
atom systems has been made recently by using a fitting badisstmvariant with respect to all
permutations of like atom$.(Also consult this paper for a review of other recent appheado
fitting PESs.) The approach makes use of powerful algoritinams computational invariant poly-
nomial theory. The key feature of this method is to compuggptimary andsecondarynvariants
for a particular molecule permutation group. Once the prynaad secondary invariants are com-
puted, every invariant polynomial basis function can bequely factorized as the product of a
secondary invariants with a polynomial of the primary ingats (typically this polynomial is just
a product of some primary invariants when constructing tivariant basis functions). The com-
putational efficiency of this representation comes frons factorization. Since every invariant
polynomial can be written as the product of two invariantypoimials, hence in the real evalua-
tion of the potential energy function, only multiplications are need to evaluate all tNebasis
functions, once the necessary multiplication and additiare done to evaluate the primary and
secondary invariants.

This method has been applied into a variety of molecules aalkcular systems such as
CHZ,>"HZ B9 CoH3, 19 H + CHa, 11713F + CHy, 4> malonaldehyde (CHOCKCHO), ' H3;0™, 17
OH + NO,, 18 HO, + NO,1® H505 20 and water dimmer (bD),.21:22The large set of primary and
secondary polynomial for as many as ten atom molecules wamel with the commercial code
MAGMA .23 This large library of fitting bases is available at the iOpeelBweb site?

A much more straightforward approach to develop a permartally invariant basis, termed
monomial symmetrization was briefly and only schematicdigcribed by Huangt al.?® The
method was described in more detail in one of the author’® Resig® and recently reviewed
and illustrated for several moleculés.

The monomial symmetrization approach (MSA) appears prawsgefto be much less efficient

than the invariant polynomial approach and so its presentatas mainly done as a pedagogi-
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cal tool. In this paper we describe a method to make thisgtttirward fitting procedure quite
efficient and thus potentially competitive with the comigtainvariant polynomial approach. An-
other key point of the paper is to show that the implememntatiothe approach is fairly straight-
forward and does not require access toNtasMA code.

The paper is organized as follows. A brief review of the morasymmetrization approach
is presented in Section 2, followed by the algorithm to spgethe function evaluation process.
The method is exemplified by an application for theG4 molecule. In Section 3, numerical
experiment results for this approach are compared with éhgpatation invariant polynomial ap-
proach. A brief discussion including some possible newatibes using this approach is given in

Section 4. A summary and conclusions are given in Section 5.

2 Theoretical Background and Computational Details

2.1 Coordinate Representation of the Potential Energy Surface

The molecular potential energy surface, which we denot¢,ashould respect the key invariant
properties of the physics. The well-known ones are ovaratidlational and rotational invariance.
A third one, that is obvious, but much less well known is imeace with respect to all permutations
of like atoms. This invariance has been noted in the classi& by Murrell and co-workersand

is at the heart of the approach recently reviewed by Braam8awthan?* As noted in that review
and the primary sources cited there, the ideal choice ofdioates forV should enable these
invariance properties to be “built in”. The full set of interclear distances (of which there are
”(”—2’1) for a system oh atoms) almost satisfy this property. That is these distwace invariant
with respect to overall translation and rotation of the roaolar system. They are not invariant with
respect to permutation of like atoms; however, they areetlasder these permutations and that is
the property that has been exploited to make basis functmrbe representation &f obey that
invariance.

Before we show how this can be done using the M8&25we make two important remarks.



First, the full set of internuclear distances is known asdunelant set of coordinates since it is
well known that only 8 — 6 internal degrees of freedom are needed to specifyaaam molecular
configuration. Thus fon greater than four there are more internuclear distancesittiarnal
degrees of freedom and in that sense the choice is intearudistances enlarges the space of
variables forn > 4. Second, and independent of the valuapinternuclear distances are not a
good choice of variables for a monomial or polynomial bagisepresenV. This is because these
distances become arbitrarily large when fragments formtians\V would diverge erroneously in
these regions. Thus we and others use simple transformedhes that go to a constant in these
regions. There are several choices for these variablesvthbtive used and some of these choices
will be given below and a specific choice is made when we censid application to the $0™
PES. However, to investigate how these variables permwuterymermutations of like atoms it is
sufficient to consider the set of internuclear distancessange do that here.

To proceed we label the atoms in a molecule as - ,n, hence thé“”z;l) internuclear dis-

tances in lexical order

(rl,27 T 7r1.,n7 r2,37 T >r2,n7 e 7rn—1,n)-

Before proceeding we note that a choice of associated Morsbles that we have used exten-
sively isy; j = exp(—ri,j/A ). Also we introduce a shorthand notation for these dista(megorse
variables)x, | = 1,n(n—1)/2 where thex are ordered according to the lexical ordering gf
Vi,)-

To proceed it is useful to consider a specific example of aagdbmic molecule, 4 and the six

internuclear distances

(r1,2,r1,3,r1,4,r23,12.4,134).

and associated variables

(X1, X2, X3, X4, X5, X6).-



The usual expression fof in terms of these variables is

k

f
V(X].uXZa X37X47X57X6) - Ca,b,C,d,e,fX?nggxgxgxﬁ (21)

a+b+c+§+e+ f=0

wherea, b, c,d,eandf are all non-negative integers, akd a positive integer which sets the max-
imum as the sum of all the exponent. (The coeffici€yg 4.t Would typically be determined
by a standard linear least-squares fit to a data sabahitio electronic energies.) Clearly this
expression is not invariant with respect to permutatiorig&efatoms. However, it is quite straight-
forward to modify the expression so that it is. This is donesippgnmetrizing the monomials, as
discussed in detail elsewhere. This creates a sum of mofswith a single coefficient, which
since it is determined by fitting we denote Bgpcdef.* Consider an example permutation of
the 4 atoms where the original atom ordér2, 3,4) is permuted tq4,2,1,3). The internuclear
distances change from

(r12,r1,3,r14,23,r24,r34)

to

(ra2,r41,743,r21,r23,r1.3) = (r2,4,r1.4,34,112,123,r13)

or in the X" notation

(X1, X2, X3, X4, X5, Xp)

maps to

(X57X33X67X17X47X2)-

Thus the monomiakxx5xdxex! maps to@DXExdxex) (= xIx,xXExaE) . To complete the sym-

metrization all permutations must be considered. We intditize final result by

k

dathet et hc)

a+ b+C+§+e+ f=0

where " is the operator that symmetrizes monomials. Examplesisfilere given for AB»



and AgB molecules elsewher&This was done by explicitly enumerating all the permutatiand
showing how the internuclear distances permute. For a gemalecule the total number of per-
mutations is just the direct product of permutations of sétiike atoms. Thus for example for
molecule ABn, the order of the direct-product symmetric groumlisy and the full set of permu-
tations of the sets of like atoms and how those map onto patmons of internuclear distances
must be done. We note that if the resulting monomials aregdered in lexical form 1,2,3,etc. the
effect of the mappings is equivalent to permuting the powétke original “seed” monomial. We
use this convention henceforth.

The generation of the permutation of internuclear distar{oe equivalently the powers) has
been automated with software we have written for any mot€udnd Algorithm 1 summarizes

the process.

Algorithm 1: Monomial Symmetrization Approach

Data: k; /1l maxi mum total degree of nonom als
Data: & ; /'l pernmutation group
Result B; /'l invariant basis functions set
B« 0;
m« [0---0];
while degm) < kdo
orb(m) — {p;-m|p; € #}; [l pi: a pernutation
B — BuUorb(m);
m—m+1; /'l get the next nonom al
end

2.2 Algorithm for Efficient Basis Evaluation

Though the potential energy function as shown in Equati@has the permutational invariant
property, and we have the Algorithm 1 to generate the basistifun set, the terms (the sym-
metrized sum of monomials) are costly to evaluate and sorépsesentation is not nearly as
efficient as the one based primary andsecondaryinvariants# There clearly are strategies that
can be used to speed up the evaluation of the symmetrized somarmmials, which henceforth

we denote as invariant polynomials.



Clearly if the invariant polynomials could be factored intover order invariant polynomials
that would achieve a great speed-up. To our knowledge timsatédbe done easily (primary and
secondary invariants essentially do this but the comprntaif primary and secondary invariants
is difficult and complicated, as is the factorization). Here describe and test a less ambitious
factorization scheme, which is a binary factorization plimainder method, where the remainder
is an another invariant polynomial, which may have alreaglgrbcomputed. In order to describe
this approach we introduce some new notation and nomenelafis noted already an invariant
polynomial (of some total degree) is the sum of all the moradgngenerated by acting all the
possible permutations on a seed monomial. We denote thi sebnomials as the orbit of the
seed monomiah, and denote it agrb(m), which could be representedad(m) = {mP |p; € Z2}.

Hence Equation 2.2 can be simplified as

k

V (X1, X2, X3, X4, X5, Xg) = Dlabcdef (;orb([abcdeﬂ)> , (2.3)

a+b+c+c§i'+e+ f=0

where[abcdef is a shorthand notation for a general monomfachgxf{xgxé.

It is clear that ify , orb([abcdef) could be evaluated effectively, then the whole potential
energy function could be computed effectively. One way teespup this process is to evaluate
or build these orbits recursively, i.e., express the “latebits as some simple expression from
the “earlier” ones, where the terms “later” and “earlieré aet to be defined as the ordering of
monomials.

For monomials with different total degree, it is easy to ottéem according their total degree.
For monomials with the same total degree, we order them dirgpto the number of non-zero
powers. For convenience, we order a monomial with more moo-powers before another one
with fewer non-zero elements but with same total degreenftance[010101 < [030000. If two
monomials have the same total degree and the same numben-azEnmw elements, then we order
these monomials according to their lexicographical orfderexample[010101 < [101010. This

ordering scheme is made for later computational converieBnilar to this ordering of monomi-



als, we can also order the polynomials or orbits, and her@ahgomials are ordered according
to the “largest” monomials (ordered in the last positionaxding to the monomial ordering) in it.
Note that for molecules with greater than four atoms the marm total degree is typically much
less than the number of internuclear distances there arelgogmials with where every; has a
non-zero power.

To illustrate the approach consider the polynomﬁ&k x%, which is invariant with respect to
the permutation ok; andxp, and note that it cannot be simply decomposed as a produwatoof t
lower order polynomials. (It is in fact a primary invariarglpnomial.) However, it can be given

as a low order product with a remainder.

X2+ X5 = (X1 +X2) (X1 4 X2) — X1X2 — X1 %2

As a result, if polynomiak; + X, andxixo are both in the invariant basis function sequence, and
both appear “earlier” tham{ + x%, thenx% + x% could be very easily evaluated with one multipli-
cation and two subtractions. To evaluaget+ x3 directly, we need two multiplications and one
addition . Since multiplication is more expensive than &ddior “subtraction” the decomposi-
tion should speed up the evaluation process. If such a deasitigm can be found for a general
invariant polynomial, the invariant basis function evaio@a process will be greatly sped up.

Now the question comes to the existence and uniquenesssdfitid of decomposition. Un-
fortunately, neither of these is guaranteed. For a suagedstomposition, which we will denote
as a “usable decomposition” it is required that the two poiyrals that form the product be of
lower degree, which of course they are, and also that theinel@apolynomial come "before” the
polynomial become decomposed. This is not always the casaethar issue for the decomposition
is the uniqueness. Since there are various ways to factetizgh degree monomial as low degree

ones, for example, for a monomi&l12101, it can be factorized as

(012101 = [010001 - [002100



or

(012101 = [011101- [00100Q

or any other two monomials whose sum of exponents equal torigaal exponents. Different
factorizations of the monomials result in different renti@npolynomials, and different factoriza-
tion may or may not lead to a usable decomposition of a highegegolynomial.

One practical to approach to this factorization of polynalsniis to list all the possible fac-
torizations of the seed (it can be any monomial of the polyiaynof a high degree polynomial.
Denoting the high degree polynomial s and one monomial ip; asmy, we havep; = orb(my),
and note that we do not distinguish the set of monomiatsrb&m ) and the polynomial which is
the sum of all the monomials in this set. Supp@sas a polynomial arranged befom in the
invariant polynomial basis sequence, then we can scan dtbeanonomials inp,, if there is one
monomial () in pz that is a factor ofny, then we can factorizey asmy = npmg, and further
find the orbit ofmg (orb(mg)) in the polynomial basis. Further suppgse= orb(mg), then we can
form the productp,ps. The difference betweepyps and p; should be a sum of orbits of some
other monomials (sum of some other invariant polynomials, fewer the polynomials need to
subtract the better. If it is not possible to find a usable dgmmsition, then we have to evaluate
the polynomial by evaluating every monomials first. Everynmmials within a polynomial that
has no usable decomposition are pushed into a queue. Thet gpéer this process is determined
partially by the size of the monomial queue. If most of theypoimials can be decomposed suc-
cessfully, the size of the monomial queue is small and theiefity of the approach is high. For
monomials in the queue, the evaluation process for thendadab be sped up by factorizing the
later ones as the product of earlier ones.

In summary, all the possible monomials with total degres tegan some threshold are enu-
merated and grouped into orbits by the action of permutatidiine sum of such monomials in a
orbit is an invariant polynomial. They are arranged aceuaydo the polynomial ordering scheme
as defined above. Then the polynomials are decomposed mfrduct of two polynomials and

possibly subtracting a small number of same-order polyatsii this is possible. Otherwise, the



polynomial is kept as the sum of monomials. A factorizatitapss performed for every monomial
from the previous step, and evaluated as the product of texiqus ones. In the follow section,
an example will be given to show the process.

The algorithms just described above are summarized as t@itkim 2, 3 and 4.

2.3 Example: Basis Functions for HO™

H3O™ is an important molecule in chemistry, and it has three idahlhydrogen atoms which make
it a good example to illustrate the MSA process. Of courserdlsalts shown apply to any8
molecule.

The three H atoms are labeled as 1, 2, 3 and the O atom is lahekedTable 1 shows all the
permutation actions on4®* and also on a general monomjabcdef ] . For the demonstration
purposea,---, f are all different integers, in reality, some of them may beatgconsequently,
the orbit of a monomigl abcdef ] may has less than 6 monomials, and this is shown in Table 2.

Table 2 lists all the invariant polynomial basis for molextizO™ up to degree 3. All those
polynomials that have usable decomposition under the pofyal ordering scheme are indicated
as a product of two other basis function less some other hasitions. As for those do not have

usable decomposition, the decomposition is written asuhea monomials.
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Algorithm 2: Trial and error decomposition algorithm for all the peratidnally invariant
basis functions

Data: B; /1l invariant basis functions set
Result D ; /| deconposition of bjeB
Result M ; [/ nonom al set
Bp—0; /'l single term polynom al set

/'l populate the single term polynom al set
foreachbj € Bdo
if |bj| = 1then
| Bp <« BpUD;;
end
end
[l trying to deconpose every basis function
M «— 0;
im«—0; /] size index of M
foreachb; € Bdo
if bj € Bp then
/1 deal with single termbasis function
M — MUDb;;
iM «—im+1;
D «— DUIi,0,im]; /1 0 indicates fail ed deconposition
else
/1 deal with multiple terns basis function
if (3bm, bn, by, <by) V(b =bm-by—by, —---) then

/'l the basis function has a usabl e deconposition
D«—DuUli,,mn,lq,--]; /1 1 indicates successful
deconposi tion

else
/'l the basis function has no usabl e deconposition
M — MUmondb;); /'l save the nononial set
D—DUJi,0im+1,---,im+|bi|]];// record the sum of nonomi al s
im —im -+ [bil;

end

end
end

11



Algorithm 3: Decomposition of a basis function (polynomihj)

Data: B,b; € B; /1 invariant basis functions set, and one basis
Result by =by-by—by---, (mn,l,--- <i) or fail

D« 0; /'l usabl e deconposition set
m, < seedby); /'l my enono(b)

foreachbj € BV bj < bj do

if 3mp € mondb;) v my = mp - mg then

bm < bj;

bn < orb(mg);

P« bm x bp —bj;

if (3by,,---€B)V (b, - <b)Vv(p=73;b;)then
| D—DUJ[i,mn,lq,---];

end

end

end

if D=0then

| return fail;

else

\ return de D:|d| <|di|,vdi € D;// return the sinplest deconposition
end

Algorithm 4 : Decomposition of Monomials

Data: M ; /1 a nmonom al set
Result H ; /1l the deconposition of nmonom als
H— 0;

foreachme M do
if (Imi,mj e M)V (m,m; <m)V(m=m-m;)then
| H—HUI,j;
else
| H—HuUm;
end
end

Table 1: The permutation of thes@* molecule and its action on a general monorfiabcdef |

Permutation Atom Labels Internuclear Distance Vector Rexech Monomial
p1 1234 (X1, X2, X3, X4, X5, Xp) [ abcdef ]
P2 1324 (X2, X1, X3, X4, Xg, X5) [ bacdf e]
P3 2134 (Xla X4, X5, X2, X3, X6 ) [ adebcf ]
P4 2314 (X4, X1, X5, X2, Xg, X3) [ daebf c]
Ps 3124 (X2, X4, Xg, X1, X3, X5) [ bdf ace]
Ps 3214 (Xa, X2, X6, X1, X5, X3) [ dbf aec]
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Table 2: invariant polynomails basis for molecule®t up to degree 3

ID degree| invariant polynomial basis Decomposition

Bo 0 [000000] Mo

B, 1 [000001] + [000010] + [001000] My + My + M3

B, 1 [000100] + [010000] + [100000] M4+ Ms + Mg

Bs 2 [000011] + [001001] + [001010] My + Mg + Mg

B, 2 [001100] + [010010] + [100001] Mio+ M11+Mi2

Bs 2 [000101] + [000110] + [010001] + [011000] + [100010] + [10100  B;-B,— By

Be 2 [010100] + [100100] + [110000] M13+Mia+ Mss

B, 2 [000002] + [000020] + [002000] By By — B3 — Bg

Bg 2 [000200] + [020000] + [200000] B,- B, — Bg— Bg

Bo 3 [001011] Mig

B1o 3 [001101] + [001110] + [010011] + [011010] + [100011] + [10]1(}0 M17+ M1g+ M1g+ Mog+ Moq + Moo
B11 3 [000111] + [011001] + [101010] By B3z — B

B1s 3 [010110] + [011100] + [100101] + [101100] + [110001] + [11@)1 Mo+ Mag+ Mos -+ Mag+ Ma7+ Mog
Bis 3 [110100] Mag

B14 3 [010101] +[100110] + [111000] B1-Bs—B12

Bis 3 [000012] + [000021] + [001002] + [001020] + [002001] + [00Z)1  B;-Bs— Bg— Bg — Bo
Bis 3 [002100] + [010020] + [100002] By -Bs— Bio

B17 3 [000102] + [000120] + [010002] + [012000] + [100020] + [1020Q  B,-B; — Big

Big 3 [001200] + [020010] + [200001] By-Bs— Biy

B1g 3 [000201] + [000210] + [020001] + [021000] + [200010] + [2000Q B -Bg— Big

Boo 3 [010200] + [020100] + [100200] + [120000] + [200100] + [21@)0C By -Bg—B13—B13—Bi13
Boy 3 [000003] + [000030] + [003000] B;-B; — Bis

B2 3 [000300] + [030000] + [300000] B, -Bs—Boo




The factorization of all the monomials is shown in Table 3.

Table 3: Factorization of the monomials from those basistions that do not have usable decom-
position for BO™ molecule

ID Monomial factorization\ ID Monomial factorization
Mo [000000] 1 Misg [110000] Ms - Mg
M1 [000001] X6 Mg [001011] M1 - Mg
Mo [000010] X5 M7 [001101] M1 -Mjo
M3 [001000] X3 M1g [001110] Ms - M1g
Mgy [000100] X4 Mig [010011] M1 -M11
Msg [010000] Xo Mog [011010] Msz-M11
Ms [100000] X1 Mo1 [100011] Ms - M12
M [000011] M1 - Mo Moo [101001] M3 - Mq2
Mg [001001] M1 - M3 Mao3 [010110] My -Mq3
Mg [001010] Mo - M3 Moy [011100] M3 - M3
M1o [001100] Ms- Mg Mog [100101] M1 -M1a
M11 [010010] My - Mg Maog [101100] Ms-Mia
M12 [100001] M1 - Mg Moz [110001] M1 -Mqsg
M13 [010100] My - Mg Mog [110010] My - M1
M14 [100100] My - Mg Mag [110100] M- Mg

As we can see from Table 2, quite a lot of the basis function® heable decompositions,
and can be expressed as the product of two lower degree bastgohs and less some other basis
functions at the same degree but come before the curremianvéasis. As a result, the evaluation
of those basis function cost one multiplication with somditoin. For those monomials, almost
all of them could be factorized as a product of two previoussprthis significantly reduced the
monomial evaluation time especially when the total degfeeanomial get higher and higher. All
those monomials that can not be factorized are those siagilable terms, and they are trivial to

evaluate.

2.4 Applications to Other Molecules

Relevant information about the monomial and symmetrizedanoal basis for a variety of molecules
and total degree is given in Table 4. Columns three and fow thie size of the monomial and

symmetrized monomial (polynomial) basis for each exampie reduction in size for the polyno-
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mial basis is large. However, it is not as large as the ordénetorresponding symmetric group;
this reduction factor is only approached as the total degpgeoaches infinity. For example for
A4 the maximum possible reduction is 24 and as seen for degriee &ctual reduction is 15.4.
Next consider the number of polynomials and the percentbatfe®f all polynomials that have a
usable decomposition shown in column 5 and 6. The percegésainom almost 100 % to a low of
51.95 %. The number of remainder monomials to be evaluatth@mumber that can be factored
are given next. Finally, an "Efficiency" column is includedialhcontains two values. The ratio
of total monomials to total polynomials is given in parersie and the first number is the ratio of

monomials to the sum of usable decomposition plus monoratils
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Table 4: Invariant Polynomial Basis Function Decompositigiormation

Molecule MaxDeg TotMono. TotPoly. Usable Decomp. Usabledep.% Mono Left Mono Fact Efficiency

Az 6 84 23 19 82.61 % 8 4 3.11 (3.65)
Az 8 165 41 37 90.24 % 8 4 3.67 (4.02)
AB 6 84 50 46 92.00 % 5 1 1.65 (1.68)
AB 8 165 95 91 95.79 % 5 1 1.72 (1.74)
A4 6 924 72 60 83.33% 88 81 6.24(12.83)
A4 8 3003 195 182 93.33 % 112 105 10.21 (15.40)
AzB 6 924 196 185 94.39 % 33 26 4.24 (4.71)
AzB 8 3003 590 579 98.14 % 33 26 4.91 (5.09)
AxB> 6 924 201 282 96.91 % 18 11 3.08 (3.18)
AxB; 8 3003 882 873 98.98 % 18 11 3.37 (3.40)
ABC 6 924 502 494 98.41 % 11 4 1.83 (1.84)
ABC 8 3003 1589 1581 99.50 % 11 4 1.89 (1.89)
As 6 8008 140 94 67.14 % 2368 2357  3.25(57.20)
As 8 43758 580 443 76.38 % 10158 10147  4.13 (75.44)
A4B 6 8008 495 437 88.28 % 807 796  6.44 (16.18)
A4B 8 43758 2327 2216 95.23 % 1953 1942 10.50 (18.80)
AzB; 6 8008 889 838 94.26 % 390 367 6.52 (9.01)
AzB; 8 43758 4343 4249 97.84 % 876 853  8.54(10.08)
A3BC 6 8008 1603 1565 97.63 % 161 150 4.64 (5.00)
A3BC 8 43758 8163 8121 99.49 % 185 174 5.27 (5.36)
ABC 6 8008 2304 2278 98.87 % 72 61 3.41 (3.48)
ABoC 8 43758 11910 11884 99.78 % 72 61 3.66 (3.67)
ABCD 6 8008 4264 4249 99.65 % 22 11 1.87 (1.88)
A>BCD 8 43758 22734 22719 99.93 % 22 11 1.92 (1.92)
AsB> 4 12650 218 148 67.89 % 4997 4975  2.46 (58.03)
AsBy 6 296010 2651 2080 78.46 % 78066 77924 3.69 (111.66)
AsB3 3 9139 77 40 51.95 % 5485 5448 1.65 (118.69)
AsB3 4 91390 327 208 63.61 % 47533 47496 1.91 (279.48)




Perusal of this table leads to the conclusion that the cufaetorization method works better
for molecules with 2 or 3 identical atoms than for moleculethwnore identical atoms. On the
other hand the size of polynomial basis decreases by a liagter for such molecules (obviously
since the order of the symmetric group increases).

The lack of usable decomposition for all (invariant) polgmals in the present algorithm comes
from the polynomial ordering scheme. Itis not difficult taghthat any high degree invariant poly-
nomial constructed using monomial symmetrization apgrpaan be represented as the product
of two low degree polynomials and a remainder invariant poigial of the same degree. If the
polynomial ordering scheme can ensure that polynomiald teée subtracted are always come
before the target polynomial, then the inefficiency factmuld be removed and we can claim that
the monomial symmetrization approach is almost as fasteasdmputation invariant theory based
approach. However, this ordering scheme is difficult to treies. A simple example may show
the difficulty. Suppose tha + Xz, X2 + X5 andx;x; are invariant polynomials with respect to the
permutation ofk; andx,. Both x% +x§ andxyxp are of degree 2, anxi + x» is of degree 1, which

is always come before the other two polynomiafs:+- x5 could be decomposed as

X2 4+ X5 = (X1 +X2) - (X1 4 X2) — X1 X2 — X1 %2 (2.4)

andx; X, could be decomposed at

X1X2 = (Xg +X2) - (X1 +X2) — (xf + x%) — X1X2. (2.5)

It is easy to rearrange Equation 2.5 as

21X = (X1 +X2) - (X1 +X2) — (3G + X3). (2.6)

As can be seen, no mater the polynomial ordering scheme istij@ix;xo comes before@+x§

or after it), there is always one useless decompositionoktinfiately, one ok X andx{ + x% must
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be evaluated explicitly. This coincide with the primaryaniants.

In another case, suppose that we have invariants

A=x{4+x
B =xx3 (2.7)

C = x5+ X5X2,

and they could be decomposed as

A= (3 +X5) - (X4 +X5) — (XX + X5x5)
B = (X3 +X8X2) - (X1 4 X2) — (X155 + X3X2) — X2x3 (2.8)

C=(x1+X2) - (G +33) — (X] +x5).

X1+ X2, X2 + X3, X3 + X3 andx1x3 + X2x, are at lower degree comparingAoB andC, hence their

values are supposed to be calculated. Consequently, thengestion can be simplified as

A=a-2B
B=B-C-B (2.9)
C=y—A

where

a = (G+x5)- (3§ +x5)
B= (x1x§ + x%xz) (X1 +X2) (2.10)

V= (xa+x%) - (¢ +3),

and they can be regarded as constant.
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It is obvious thatA, B andC are intertwined, and some of them must be evaluated by brute

force. However, Equation 2.9 could be regarded as a linetesyas

120 A a
021|-|B|=|p8 (2.11)
101 C y
which can be solved easily as
1 1 1
AZEG—EB—FéV
1 1 1
1 1 1

This indicates that it is possible to further decouple imtéred polynomials, and obtain their
usable decomposition simultaneously by solving a lineatesy. Solving the linear system is an
extra cost for the decomposition, but it is an one time caxt,ibwill not be inherited in the future

polynomial evaluation process. As a result, we can furtipered up the polynomial evaluation

process. We plan to investigate an implementation of tlgjeréhm in the future.

3 Application to a Potential Surface for H3O™"

The methods described in the previous section to automatsytmmetrization of the monomial
basis and to evaluate the subsequent terms by means of thaplesition procedure are applied to
the potential energy surface o8*. An unpublished PES for this cation was obtained using the
invariant polynomial approach previoudkand this serves as the “benchmark” PES both in terms
of precision and speed of evaluations. The precision anddsp€ evaluation of the monomial
symmetrization approach will be tested against this bemackhm

HsO™ potential energy surface is a well studied surfaté’->®Previously, the invariant poly-
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nomial basis functions were used for the fit and these werstamted based on computational
invariant theory. Here we directly compare these two methbdth implemented i€++). The
internuclear distancesare is replaced by the variable®1 exp—0.2x)? as usual* 61604 HO™
configurations were gathered by low-level direct molecdiaramics and further the energies were
evaluated based on CCSD(T) method with aug-cc-pVTZ basis.ehbegy range for these con-
figurations is about 29674 cm (84.84 kcal/mol). The maximum total degree for the polyrami
basis is set to be 6. This is the same total degree used famthgant polynomial fit. Since both
approach have the same number of basis functions, the nurhigeefficients is also the same.
Note that the coefficients values are different since thésldaactions from two approach differ.
The coefficients for both fits were obtained with standardtisguares codes. The final root mean
square error for both fitting approaches are 29.03%with the maximum absolute residual value
deviation at 0.16 cm!. As expected, there is almost no difference is observec@atcuracy of
these two approach.

After obtaining the coefficients, we evaluated the enerfpeshe molecule configurations in
the original data set used for fitting three times which rssu84812 potential function calls in
total. The computational invariant theory approach todk &econds, and the modified monomial
symmetrization approach took 9.50 seconds. It is about 8%d#iciency for the monomial sym-
metrization approach which are almost negligibly. Compatire details of these two approaches,
it is not difficulty to notice and the slightly more time is garmed in evaluating and summing
the monomials from those polynomial basis function thatmainbe effectively decomposed. For
H3O™ molecule, the number of monomials does not change when thk@rmm total degree of
polynomial basis function get higher and higher. As a residt timing difference would be virtu-

ally the same.
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4 Discussion

Perhaps the most striking practical effect of symmetrizhmgmonomial expression for the poten-
tial, Equation 2.1 is the very large reduction in the numbfeteoms and hence unknown linear
coefficients to be determined. This was illustrated in Tabkhere the number of monomials in
the unsymmetrized expression #is compared to the number of symmetrized polynomials. The
ratio of these two numbers approaches the order of the symengedup in the limit of infinitely
many terms in both expressions; however, as seen even faeshtmial orders the reduction can
be very big. Practically this has allowed us to consider ks with up to 9 atoms and to deal
with a relatively small linear algebra least-squares minattion. This very practical advantage is
realized by using the full permutation group of a molecule.

This practical advantage in exploiting the full permutatibsymmetry also holds for molecular
complexes. For example consider the water dimer and triwiegre the order of the symmetric
group is 4!12!= 48 and 6!3!= 4320, respectively. Potential energy surfaces for bothwtater
dimer and trimer, using the full permutational symmetryéaeen reported®2° However, phys-
ically one knows that for temperatures or total energiesitgfrest most of these permutations are
infeasible, that is they must surmount high potential leasrio be realized. Thus it would seem that
using the full symmetric group, while greatly reducing thenber of terms itV, is also physically
irrelevant. ldeally one would like a representation thahbgreatly reduces the number of terms
inV and only describes the feasible permutations. (In the clasater clusters this would be the
permutations of the H atoms associated with each monomey lfrine is going to continue to use
all the internuclear distances (probably with a standardysteody representation of the potential)
then it seems clear that the one will have to restrict theearigpowers of some of the internuclear
distances. The presumably would be the monomer internutigtances which undergo small am-
plitude motion. In fact a rather primitive version of thigptyof restriction was used in a monomial
representation of the global potential 0$E€O for the CO internuclear distané® Further work
along these lines is planned.

Also, as the observant reader has noted the use of the Mgrsertiriables introduces a non-
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linear range parameter. Generally we have used a single naagameter, typically 2-3 Bohr,

for all variables. In principle this parameter could be optied and also made specific for a
given set of internuclear distances, e.g., all OH, HH, and d¥@ances. Doing so would turn

the straightforward linear-least squares optimizatido e combination of linear and non-linear
optimizations. This may be worth considering; howeverhvaitsubstantial increase in numerical
complexity.

Finally we note that the library of primary and secondaryanant polynomials referred to
in the paper does not include analytical expressions fdigbalerivatives. This may be done in
the future; however, it will involve considerable symbatiomputation. It is clear that using the
monomial symmetrization described here this task is madghreasier for the user. We plan to do

this in the near future.

5 Conclusions

We have presented a straightforward monomial symmetoizaitheme for the representation of a
multidimensional potential energy surface. We have pregase scheme for efficient evaluation
of the results terms in the representation and have illiestrine approach by fitting roughly 62,000
electronic energies for#0*. Some comments for future directions were also made.

The codes described herein can be obtained by contacthmey @itithor.
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